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Through numerical simulation, we have studied the nucleation and annihilation of two-dimensional optical
vortex solitons hosted in finite size light beams. Our study covers a wide range of angular momentuml ù1,
also refered to as its topological charge. We demonstrate that surface tension of light beams prevents beam
filamentation for a certain range of total reflection angles even if the hosted hole splits and decays into several
vortices with lower values ofl. We also discuss a mechanism for vortex nucleation starting from Gaussian
beams that can be used for experimental purposes. Our work adds extra support to the idea that light beams in
cubic-quintic nonlinear materials can undergo a phase transition from a photon gas to a liquid of light.
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I. INTRODUCTION

Vortices[1] are present in very different branches of phys-
ics such as fluid mechanics, Bose-Einstein condensation, as-
trophysics and laser dynamics, among others[2]. Optical
fields that exhibit phase singularities manifest themselves as
isolated dark spots in the modal patterns of certain lasers[3].
Each dark spot has a topological chargel that represents the
number of windings of the phase around the singularity[4].
The wave fronts near a singularity have a helical structure,
while the field at the singularity must be zero because of the
ambiguous phase, hence the dark spot. These defects can be
produced by appropriately shining a computer generated ho-
logram [5] or by propagation through turbulent optical me-
dia.

Concerning propagation in the nonlinear regime[6], the
first theoretical work analyzed their stability in Gaussian-like
distributions propagating in optical Kerr materials[7]. It was
found that for a cubic self-focusing refractive index, a beam
of finite size will always filament under the action of a phase
dislocation [8]. This also holds true for saturable self-
focusing nonlinearities[9,10]. On the other hand, vortex
states were predicted and found experimentally for self-
defocussing materials both in the Kerr case for continuous
background[11] and in the saturable case with finite size
beams[12].

It was also shown in Ref.[13] that stable vortex states
with angular momentuml =1 can be obtained as stationary
states of the propagation of a laser beam through cubic-
quintic nonlinear optical materials[14]. The refractive index
of this kind of materials has a maximum for a given intensity.
The formation of such vortices is achieved when a Gaussian
laser beam with power over a critical threshold shines a
phase mask.

Previous studies have also elucidated the dynamical prop-
erties associated with light condensates with some kind of
surface tension properties[15]. In this work it has been
shown that laser beams with almost square profiles, which
are the eigenstates of the cubic-quintic Schrödinger equation,
behave in a similar way as liquids with surface tension prop-
erties. More surprisingly, it has been found that the stability
of such vortex eigenstates is a natural consequence of the
nonlinear Schrödinger equation. In this paper, we explore the

collisional dynamics of such stable vortex eigenstates.
We shall focus our attention in this article upon the effect

of surface tension of laser beams with angular momentum.
Our interest shall be to demonstrate that surface tension pre-
vents beam filamentation even in the case of total reflections
where the inner vortex can split into several holes with dif-
ferent values ofl.

After brief introduction of the governing equations, the
numerical simulations shall be described. The 2D nonlinear
Shrödinger equation(NLSE) is used for simulating the
propagation of stable vortex eigenfunctions in cubic-quintic
materials. The initial vortex eigenstates have been obtained
by integrating the stationary NLSE. Our simulations demon-
strate that a relation between surface tension[16] and optical
stable azimuthal states exists as a function of the topological
quantized chargel.

The structure of this article is as follows. Before present-
ing our results, we shall briefly describe the physical con-
figuration represented in our model for creating optical vor-
tex eigenstates together with the governing nonlinear
Schrödinger equation. While coalescense or nonlinear filter-
ing are candidates for the creation of stable eigenstates, our
simulations assume a given vortex eigenstate distribution,
obtained from stationary state solutions of the NLSE. We
will also analytically calculate the critical values of the
propagation constant and peak amplitude that caracterize the
domain existence of the vortices.

For several vortex eigenstates with different topological
chargesl and for different number densitiesr, we first estab-
lish long term stability to small amplitude perturbations.
Next, the results of large amplitude perturbation, in the form
of collisions with planar surfaces, are presented. Detailed
surface waves have been measured and a condition for vor-
tex breaking is given.

II. PHYSICAL MODEL

The equation for paraxial propagation alongz, of a con-
tinuous linearly polarized laser beam, in a nonlinear optical
material with a intensity-dependent refractive index, is gov-
erned by a generalized nonlinear Schrödinger equation
(NLSE), given as follows:
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where k=2p /l is the wave number in vacuum,n0 is the
linear refractive index,uC u2 is the intensity of the electro-
magnetic wave, and¹'

2 =r−2]2/]u2+r−1] /]r +]2/]r2 is the
transverse Laplacian operator in cylindric coordinates
sr ,u ,zd. The function fsuC u2d indicates the dependence of
the nonlinear refractive index with the beam power. To
achieve the phase transition from a gas state to a liquid light
state,f must have a maximum at a given beam intensity. A
simple model with this property is the cubic-quintic nonlin-
earity f17,18g, where fsuC u2d=n2u C u2−n4u C u4, such that
the positive constantsn2 and n4 capture the dependence of
the refractive index on the intensity of the beam. Physically,
the combined effect of diffraction and the self-defocusing
term of n4, will balance the collapsing tendency induced by
the Kerr effect, giving rise to a stable two-dimensional light
distribution f19g.

III. STRUCTURE OF VORTEX STATES

We performed the numerical integration of Eq.(1) for
stationary vortex states[13] of the form Csr ,u ,zd
=csrdeisbz+lud, wherer =sx2+y2d1/2 is the radial dimension,b
the nonlinear phase shift or propagation constant, andu
=tan−1sy/xd. For a given integer value ofl, a continuum of
eigenstates can be obtained withb varying between zero and
a critical valuebcr over which no stationary states can be
found. In the limitr →`, termsr−1]C2/]u2 and r−1] C /]r
tend to zero, so that Eq.(1) yields a one-dimensional equa-
tion of the form

b
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We obtain a solution similar to the one given in Ref.f14g:

c2srd =
3n2

4n4

1 − a2

2a cosh2skÎ2bn0rd + 1 −a
, s3d

where the dimensionless parametera is given by a
=Î1−16bn4/3kn2

2.
By imposing that the beam power is equal toN

=2pe0
`c2srdrdr, we get

b =
3kn2

2

16n4
tanh2sÎ2/3Nd. s4d

Thus,N is directly related toa by a=1/coshsÎ2/3Nd.
In the limit N→` a goes to zero, so that we obtain the

critical value of the propagation constantbcr and the ampli-
tude Acr:bcr=3kn2

2/16n4 and uAcru2=3n2/4n4. Note that the
previous critical values do not depend on the angular mo-
mentuml of the beam.

It can be shown that low values ofb yield low values of
the beam powerN and light distributions with Gaussian-like
peaks. Asb is increased, the beam flux grows and the spatial
shapes tend to narrow, producing a minimum width and a
maximum peak intensity of the stationary states, for a given

power. For larger values ofb, the beam flux grows rapidly
and the peak intensity of the light distribution saturates due
to the effect ofn4.

For larger powers, the spatial light distributions converge
towards wide flat-top profiles with sharp decaying edges
[20,21], similar to hyper-Gaussian distributions. We have
also detected a slow decrease ofdc /dr at r =0 for large
values ofN. We must also stress that the limitb→0 yields to
a nonzero value of the beam power.

In this paper we will study laser beams with approxi-
mately square profiles, as described previously, for different
values of the angular momentuml .1, which are the eigen-
states of the cubic-quintic NLSE. As can be seen in Figs. 1
and 2, the central hole of the beam increases its size with the
topological chargel, while the size of the corona saturates
for high values of the angular momentum. Note that this
behavior occurs for any value of the propagation constantb.
Close tobcr, the beams are almost square shaped. In this
limited case, it is possible to derive an analytical expression

FIG. 1. Dependence of the width of the hole versus topological
chargel for different values of the propagation constantb.

FIG. 2. Dependence of the size of the corona of the vortex
versus topological chargel for different values of the propagation
constantb.
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for the surface tension of these light condensates. To do so,
we express the increase of the system energy using the
Hamiltonian dH=f 1

2u¹ C u2− 1
2sn2/n4duC u4+ 1

3uC u6g2prdr,
and we consider a thermodynamical model withdH=mdN
−sdA. By analogy with Bose-Einstein condensates in alkali
gass,b plays the role of a chemical potentialm Thus,sdA
represents the work due to deformation against a surface ten-
sion s. Considering a square eigenstate function of radiusr,
we obtain

s =
9p

16
Sn2

n4
D3

r . s5d

Thus, the surface tension of the light condensates grows
linearly with the radius, as in the case of usual liquid drop-
lets. This adds extra support to the idea that light beams in
cubic-quintic nonlinear materials can undergo a phase tran-
sition from a photon gas to a liquid of light.

IV. NUMERICAL SIMULATIONS OF PROPAGATION

In order to test the stability of the vortex states that we
have previously described, we present in this section results
for the propagation of beams with a nested vortex through a
bulk cubic-quintic nonlinear optical material in the presence
of a planar boundary. The propagation equation for the above
waveguide in the paraxial regime is a generalized NLSE,
including the effect of boundaries. The input beam impacts
the boundary with a given incidence anglea (initial velocity
of the equivalent particle) and suffers a total reflection. For
low values of the initial velocity, the collision is quasielastic.
This means that the emerging beam will preserve a compact
support with the nested vortex. Above a critical value of the
incidence angleacr which depends upon the value ofl, the
vortex is annihilated and the compact support may produce
several filaments, depending upon the initial conditions.

In Fig. 3 we show the dependence of the critical incidence
angleacr versus the topological chargel for a propagation
constantb=0.95bcr. As can be appreciated, there is a fast
decrease of the critical incidence angle for low values of the

angular momentum. For higher values ofl, this angle fluctu-
ates around the value<0.25°.

We have performed a large series of numerical explora-
tions for different angles of incidencea, ranging from quasi-
elastic to the complete inelastic regime, showing that surface
tension effect provides the beam a high stability. The simu-
lations correspond to an initial radial stationary state calcu-
lated directly from the NLSE using a relaxation method. Our
study covers a wide range of angular momentum or topologi-
cal chargel .1.

The typical beam widths used in the simulations are
<20mm for a given wavelengthl=1.064mm and a nonlin-
ear phase shift ofn2u C u2<0.01. Numerical simulations are
done with the standard split step Fourier transform method
using FFTW algorithm on a 5123512 grid. The window
width is 800µm.

A. Elastic regime: Small incidence angle

We shall first analyze the elastic regime, which corre-
sponds to an incidence anglea,acr. As an example, in Fig.
4 we show the result of the numerical simulation of the total
reflection at a nonlinear-linear interface of a beam with a
nested vortex of topological chargel =4. The propagation
constant isb=0.95bcr and the angle of incidence isa
=0.25° (which is below the critical angleacr, as can be ap-
preciated in Fig. 3). In this case, the collision with the
boundary produces a flattening of the initial beam when it
impacts the boundary, so that the emerging beam preserves a
compact support with the nested vortex of topological charge
l =4.

Our computer simulations show that there is a deep anal-
ogy between incompressible fluid dynamics and the interfer-
ence behavior at boundaries of the azimuthal beams studied
previously. This can be understood by regarding vortex states
as light condensates with a special type of surface tension —
analogous to that of a liquid droplet— such that, above a
critical value of the beam flux, is strong enough to retain the
vortex without breaking.

FIG. 3. Dependence of the critical angle of incidenceacr versus
topological chargel. The propagation constant isb=0.95bcr.

FIG. 4. Numerical simulation of the total reflection at a
nonlinear-linear interface of a beam with a nested vortex of topo-
logical chargel =4 and a propagation constantb=0.95bcr. The
angle of incidence isa=0.25°. The propagation distances(in mm)
are (a) z=8, (b) z=88, (c) z=168, (d) z=248, (e) z=328 and(f) z
=400.
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B. Quasielastic regime: Vortex splitting without filamentation

Let us now consider the quasielastic regime, in which the
angle of incidence is above its critical valueacr. In order to
show the effect of surface tension, we present three particular
cases from our numerical investigation. All of them corre-
spond to an initial radial stationary state of the propagation
equation withb=0.95bcr, and differ only in the topological
chargel and the incidence anglea.

In Fig. 5, we show the result of the simulation of the total
reflection of a beam with a nested vortex with topological
chargel =9 and an incidence anglea=1.0° at a planar bound-
ary in a nonlinear-linear interface. In the insets we show the
interference patterns with a slightly inclined plane wave.
Note that the signature of a phase singularity is the fork
defect in the fringe patern where a new fringe starts at the
location of the singularity. In this case, although the initial
vortex of topological chargel =9 (a) does not dissappear, we
can see in(b) and(c) that a new small vortex of topological
chargel =1 appears inside the compact support. In(d) we can
distinguish two different vortices with angular momentuml
=1.

The other case is shown in Fig. 6, where we have simu-
lated internal reflection of a beam with a nested vortex with
angular momentuml =3 inside a bulk cubic-quintic material
surrounded by air. The angle of incidence isa=0.7° (which
is above the critical incidence angleacr, as can be seen in
Fig. 3). The insets again show the interference patterns with
a slightly inclined plane wave. As can be seen in the caption,
the initial vortex(a) of topological chargel =3 is anihilated
in (b) but the beam does not filament. This is due to surface

tension that is strong enough to maintain the same average
size. As can be seen in the caption, in(d) three small vortices
with angular momentuml =1 appear inside the compact sup-
port. A courious fact is that in(e) one of these small vortices
dissapears but in(f) we can distinguish again three small
vortices of angular momentuml =1.

The last case shown in Fig. 7 corresponds to the numeri-
cal simulation of the total reflection at a planar boundary of
a beam with a nested vortex of angular momentuml =6. The
angle of incidence isa=0.5° (which is also above the critical
incidence angleacr, as can be seen in Fig. 3). The top image
shows the isosurface of the beam trayectory. The correspond-
ing beam cross sections at different points are shown in the
images(a)–(c). As can be appreciated, in this case the initial
vortex state(a) suffers total reflection at the boundary be-
tween the nonlinear material and air(planey=0), and then it
splits into several vortices of lower topological chargel. In
(c) we can see more clearly that the initial vortex of angular
momentuml =6 has been anhililated and a new small vortex
of topological chargel =1 has appeared, as it is shown in the
interference pattern with a slightly inclined plane wave.

C. Inelastic regime: Vortex splitting with filamentation

We shall now study the complete inelastic regime, which
corresponds to an incidence anglea. .acr that induces the
breaking of the beam. As an example, we show in Fig. 8 the
result of the numerical simulation of the total reflection of a
beam with a nested vortex of topological chargel =1 and an
incidence anglea=1.3° at a planar boundary in a nonlinear-
linear interface. The propagation constant isb=0.95bcr. In
the insets we show the interference patterns with a slightly
inclined plane wave. As can be seen, in this case the initial
vortex (a) suffers total reflection in(b), and in(c) the vortex
has been anihilated. In(d) and(e) we can see how the com-
pact support is strangulated. Finally, in(f), the beam fila-

FIG. 5. Numerical simulation of the total reflection at a
nonlinear-linear interface of a beam with a nested vortex of topo-
logical chargel =9 and a propagation constantb=0.95bcr. The
angle of incidence isa=1.0°. The propagation distances(in mm)
are(a) z=2, (b) z=18, (c) z=26, and(d) z=38. The insets show the
interference patterns with a slightly inclined plane wave.

FIG. 6. Numerical simulation of the total reflection at a
nonlinear-linear interface of a beam with a nested vortex of topo-
logical chargel =3 and a propagation constantb=0.95bcr. The
angle of incidence isa=0.7°. The propagation distances(in mm)
are (a) z=2, (b) z=52, (c) z=58, (d) z=70, (e) z=72, and(f) z
=92. The insets show the interference patterns with a slightly in-
clined plane wave.
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ments because the surface tension is not strong enough to
maintain the compact support without breaking.

V. CONCLUSIONS

We have analyzed the propagation of light beams with
azimuthal vortices in cubic-quintic materials, showing that
there is a deep analogy between total reflection at boundaries
and the collision of a liquid droplet against a planar surface.

We have performed a large series of numerical explorations
for different angles of incidence and for different values of
the angular momentum, from quasielastic to complete inelas-
tic range. Our simulations show that the observed surface
tension property provides the beam a high degree of stability,
even if the hosted hole splits and decays to several vortices
with lower values ofl. In the limiting case of square beams,
we have derived an expression for the surface tension of
these light condensates, which grows linearly with the radius
as in the case of usual liquid droplets. Our work adds extra
support to the idea that light beams in cubic-quintic nonlin-
ear materials can undergo a phase transition from a photon
gas to a liquid of light. We have also calculated analytically
the critical values of the propagation constant and the peak
amplitude that caracterize the domain existence of these vor-
tices, which do not depend on the topological chargel.
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